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Abstract. The nonlinear localized vibrational modes of a one-dimensional atomic chain with two period-
ically alternating masses and force constants are analytically investigated using a discrete multiple-scale
expansion method. This model simulates a row of atoms in the 〈1 1 1〉-direction of sphalerite, or zinc
blende, crystals. Owing to the structural asymmetry, the vibrational amplitude is governed by a per-
turbed nonlinear Schrödinger equation instead of the standard one found in one-dimensional lattices with
two alternating masses but uniform force constant. Although the stationary localized modes with carrier
wavevector at the Brillouin-zone boundary are similar to those of ionic lattices, the moving localized modes
with wavevectors within the zone are different owing to the perturbation. The calculation shows that the
height of the moving localized modes in this lattice dampens with time.

PACS. 63.20.Pw Localized modes – 63.20.Ry Anharmonic lattice modes

1 Introduction

Nonlinear lattice dynamics has been much studied since
the pioneering work of Fermi, Pasta and Ulam [1].
Early work in this area have treated the one-dimensional
(1D) anharmonic lattice as a continuum obeying soliton
equations of the Boussinesq or Korteweg-deVries (KdV)
type [2]. However, towards the end of the 1980’s, the inter-
est in anharmonic lattices was renewed owing to the identi-
fication of a new type of highly localized vibrational modes
with spatial extensions of only a few lattice spacings and
frequencies lying above the linear phonon bands [3,4].
Later, by using multiple-scale analysis, it was shown that
these localized modes (LMs) are nonlinear Schrödinger
envelope solitons (or discrete breathers) in the case of
highly discrete and strong anharmonicities [5]. This was
also confirmed numerically [6]. The quantum correspon-
dence of these LMs are phonon bound states [7]. Some
progress was also reported for higher-dimensional crystal
lattices with anharmonicity in the nearest-neighbor inter-
action [8]. Experimentally, the LMs have been observed
in coupled pendulum lattices [9], electrical lattices [10],
and also in molecular crystals [11] with neutron scattering
techniques. Hence, the LMs induced by the anharmonicity
of perfect crystal lattices have raised continued interest for
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the past decade (see, e.g., recent review articles [12] and
references therein).

The lattice Green-function approach has been applied
to 1D anharmonic monatomic chains in earlier works [3,4],
but this method involves a rotating-wave approximation
and can only produce highly LMs. Multiple-scale ex-
pansion techniques have been successfully used to study
both monatomic [5] and diatomic [13] lattices with quar-
tic anharmonicity, for which the lattice equation of mo-
tion reduces to a standard nonlinear Schrödinger equation
(NLSE). Particular attention was given to the diatomic
(ionic) chain with two periodically alternating masses and
a uniform bond force constant [13–16]. This system shows
nonlinear gap LMs with smaller atomic vibrational ampli-
tudes and lower frequencies (between the acoustic and op-
tical branches of the linear spectrum) as compared to the
LMs of monatomic lattice. Campa et al. [17] investigated
analytically and numerically the existence and stability of
soliton solutions for a molecular chain with both alternat-
ing atomic masses and force constants. Although they fo-
cused on the cubic anharmonicity of the system, they also
derived a standard NLSE for the atomic displacement dis-
tribution. Recently, an atomic chain with uniform masses
but two periodically alternating force constants between
nearest-neighbor atoms was proposed [18] to simulate a
row of atoms in the 〈1 1 1〉-direction of diamond-structure
crystals. Both cubic and quartic anharmonicities were in-
cluded, and LMs were numerically observed.
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In the present work, we extend the model of refer-
ence [18] to a 1D sphalerite-crystal lattice with both al-
ternating masses and bond force constants. We study the
LMs in this system by means of a discrete multiple-scale
scheme [5,13,17]. The results obtained in this paper differ
from the situation of other 1D lattice systems [5,13] in
which the atomic vibrational amplitudes are governed by
a standard NLSE. They also differ from a similar model
in reference [17] which includes only cubic anharmonicity.
As there is no center of symmetry on either an atom or on
a bond in our lattice model, by considering the expansion
up to the third order we find that the atomic amplitude
distribution is described by a perturbed NLSE, and this
gives some new interesting aspects to the solution. The
soliton perturbation calculation shows that the height of
the moving LMs dampens with time while its initial cen-
ter position and phase linearly and logarithmically decay,
respectively.

The paper is organized as follows. In Section 2, a lattice
model simulating a row of atoms in the 〈1 1 1〉-direction of
sphalerite-structure crystals, such as the important semi-
conductor GaAs, is introduced and a discrete multiple-
scale expansion is made for the equation of motion. In
Section 3 the envelope equation of atomic displacements
is reduced to a perturbed NLSE by separately considering
the acoustic and optical modes of the system. As spe-
cial solutions of the perturbed NLSE, the stationary LMs
with carrier wavevectors at the Brillouin-zone boundary
are given in Section 4. The perturbation on the parame-
ters of the moving LMs with carrier wavevectors within
the zone is calculated in Section 5. Section 6 discusses the
results and concludes the paper.

2 Model and asymptotic expansion

We begin with a model of an atomic chain with two peri-
odically alternating masses and bond force constants be-
tween nearest-neighbor atoms. We consider appropriately
small atomic vibrational amplitudes which can produce
sufficient nonlinearity but no reconstruction or phase tran-
sition in the system. This allows to Taylor expand the
atomic interaction potential around the equilibrium and
to truncate the series to the fourth-order. The Hamilto-
nian of the system is then written

H =
∑
i

1
2
mi

(
dui
dt

)2

+
4∑
j=2

cij
j

(ui − ui−1)j

 , (1)

where ui = ui(t) is the displacement of the ith atom from
its equilibrium position. The masses are mi, with mi = m
for i even, and mi = M for i odd. Similarly, the force
constants are cij = kj , (j = 2, 3, 4) for i even, while cij = k′j
for i odd. The constants k2 (k′2), k3 (k′3) and k4 (k′4) are
the harmonic, cubic, and quartic terms corresponding to
the tight (weak) bonds between nearest-neighbor atoms,
respectively.

Since the weak and tight bonds alternate, there are two
types of LMs with centers either on weak-bond atom pairs

or on tight-bond atom pairs. We consider the former case
first, and decouple the light (even) and heavy (odd) atom
sublattices by letting u2k = vn (i even) and u2k+1 = wn
(i odd), where n is the index of a unit cell in which two
atoms are weakly bound. Thus, the classical equations of
motion for the two atoms of the nth unit cell are given by

d2vn
dt2

=
4∑
j=2

[
I ′j(wn − vn)j−1 − Ij(vn − wn−1)j−1

]
, (2)

d2wn
dt2

=
4∑
j=2

[
Jj(vn+1 − wn)j−1 − J ′j(wn − vn)j−1

]
,

where Ij = kj/m, I
′
j = k′j/m, Jj = kj/M and J ′j =

k′j/M (j = 2, 3, 4). When Ij(I ′j) = Jj(J ′j) = 0 (j = 3, 4),
this system has two branches of linear vibrations with fre-
quencies given by

ω2 =ω2
± =

1
2

[
I2 + I ′2 + J2 + J ′2

±
√

(I2 + I ′2 + J2 + J ′2)2 − 16I2J ′2 sin2
(qa

2

)]
, (3)

where q is the wavevector and a the lattice spacing, i.e.
twice the distance between nearest-neighbor atoms. The
minus sign corresponds to the lower frequency acoustic
mode and the plus sign to the upper frequency optical
mode. At the Brillouin-zone boundary, q = ±π/a these
two branches are separated by a gap ∆ω = ω2−ω1, where

ω2
1 =

1
2

[
I2 + I ′2 + J2 + J ′2

−
√

(I2 + I ′2 + J2 + J ′2)2 − 16I2J ′2

]
,

ω2
2 =

1
2

[
I2 + I ′2 + J2 + J ′2

+
√

(I2 + I ′2 + J2 + J ′2)2 − 16I2J ′2

]
, (4)

give the gap-edge frequencies, and with an optical cut-off
frequency

ω2
3 = I2 + I ′2 + J2 + J ′2 (5)

owing to the discreteness of the system.
In order to include the effects of anharmonicity

and discreteness simultaneously, we use the method of
multiple-scale approximation [3,5,17] to reduce the equa-
tion and to evaluate the modulation of the amplitude in
the lowest order of asymptotic expansion. In this treat-
ment we set

un(t) =
∞∑
µ=1

εµu(µ)(ξn, τ ;φn) =
∞∑
µ=1

εµu(µ)
n,n , (6)

where un(t) = vn(t) or wn(t), ε is a small but finite param-
eter denoting the relative amplitude, ξn and τ are “slow”
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variables defined by ξn = ε(na− Vgt) and τ = ε2t. These
are also called multiple-scaled variables. Vg is the group
velocity to be determined later by a solvability condition.
The “fast” variable, φn = qna−ωt, representing the phase
of the carrier wave, is taken to be completely discrete.
With this expansion, the displacements of the two atoms
near the nth cell can be expressed by

un±1(t) =
∞∑
µ=1

εµu
(µ)
n±1,n±1(ξn ± εa, τ ;φn±1)

=
∞∑
µ=1

εµ

[ ∞∑
ν=0

1
ν!

(
±εa ∂

∂ξn

)ν
u

(µ)
n,n±1

]
· (7)

Inserting equations (6, 7) into (2), and equating the same
powers of ε, the equations of motion for the nth cell re-
duce to(

∂2

∂t2
+ I2 + I ′2

)
v(µ)
n,n − I2wn,n−1 − I ′2w(µ)

n,n = M (µ)
n,n,(

∂2

∂t2
+ J2 + J ′2

)
w(µ)
n,n − J2v

(µ)
n,n+1 − J ′2v(µ)

n,n = N (µ)
n,n, (8)

with the elements

M (1)
n,n = 0, (9)

M (2)
n,n = 2Vg

∂2v
(1)
n,n

∂t∂ξn
− I2a

∂w
(1)
n,n−1

∂ξn
, (10)

M (3)
n,n = 2Vg

∂2v
(2)
n,n

∂t∂ξn
− 2

∂2v
(1)
n,n

∂t∂τ
− V 2

g

∂2v
(1)
n,n

∂ξ2
n

+ I2

(
−a

∂w
(2)
n,n−1

∂ξn
+
a2

2
∂2w

(1)
n,n−1

∂ξ2
n

)

+ I ′4

(
w(1)
n,n − v(1)

n,n

)3

+ I4
(
w

(1)
n,n−1 − v(1)

n,n

)3

,

(11)

N (1)
n,n = 0, (12)

N (2)
n,n = 2Vg

∂2w
(1)
n,n

∂t∂ξn
+ J2a

∂v
(1)
n,n+1

∂ξn
, (13)

N (3)
n,n = 2Vg

∂2w
(2)
n,n

∂t∂ξn
− 2

∂2w
(1)
n,n

∂t∂τ
− V 2

g

∂2w
(1)
n,n

∂ξ2
n

+ J2

(
a
∂v

(2)
n,n+1

∂ξn
+
a2

2
∂2v

(1)
n,n+1

∂ξ2
n

)

+ J ′4

(
v(1)
n,n − w(1)

n,n

)3

+ J4

(
v

(1)
n,n+1 − w(1)

n,n

)3

.

(14)

In the derivation of the element expressions (9)-(14) only
the quartic anharmonicity of the system is kept by let-
ting I3(I ′3) = J3(J ′3) = 0 for simplicity. This also allows
comparison with the solution of reference [17]. Moreover,
the expressions of M (µ)

n,n and N
µ)
n,n for µ = 4, 5... are not

presented explicitly here. Now we solve equation (8) order
by order with the help of (9–14).

3 Amplitude equations of modes

In order to avoid possible divergences, we consider the
acoustic and optical modes separately. The amplitude
equations for both modes will now be reduced to a per-
turbed NLSE.

3.1 Acoustic mode

For the lower frequency acoustic mode we rewrite the
equation of motion (8) in the form

L̂w(µ)
n,n = J ′2M

(µ)
n,n + J2M

(µ)
n,n+1 +

(
∂2

∂t2
+ I2 + I ′2

)
N (µ)
n,n,(

∂2

∂t2
+ I2 + I ′2

)
v(µ)
n,n = I2w

(µ)
n,n−1 + I ′2w

(µ)
n,n +M (µ)

n,n,

(15)

where the operator L̂ is defined by

L̂u(µ)
n,n =

(
∂2

∂t2
+ I2 + I ′2

)(
∂2

∂t2
+ J2 + J ′2

)
u(µ)
n,n

−
[
I2J
′
2u

(µ)
n,n−1 + I ′2J2u

(µ)
n,n+1 + (I2I ′2 + J2J

′
2)u(µ)

n,n

]
,

(16)

with u(µ)
n,n = v

(µ)
n,n or w(µ)

n,n. In the lowest order of ε (µ = 1),
M

(1)
n,n = N

(0)
n,n = 0, we have the linear wave equation of the

system

L̂w(1)
n,n = 0,(

∂2

∂t2
+ I2 + I ′2

)
v(1)
n,n = I2w

(1)
n,n−1 + I ′2w

(1)
n,n. (17)

It is easy to obtain the solution for this linear equation

w(1)
n,n = A−(ξ−n , τ)eiφ−n + c.c.,

v(1)
n,n = − I2e−iqa + I ′2

ω2
− − (I2 + I ′2)

A−(ξ−n , τ)eiφ−n + c.c., (18)

and to recover the linear dispersion relation (3). In the
solution (18), A−(ξ−n , τ) is an amplitude envelope function
to be determined, c.c. represents the complex conjugate,
φ−n = qna − ω−t, and ω− is the acoustic frequency given
by equation (3).

Using equations (10, 13) and the lowest order solu-
tion (18), we calculate the elements M

(2)
n,n,M

(2)
n,n+1 and

N
(2)
n,n. Their substitution in equation (15) yields the fol-

lowing second order (µ = 2) equation

L̂w(2)
n,n = i2

{
2Vgω−

[
ω2
− − (I2 + I ′2) + I2I

′
2a sin(qa)

]}
× ∂A−

∂ξ−n
eiφ−n + c.c.,(

∂2

∂t2
+ I2 + I ′2

)
v(2)
n,n = I2w

(2)
n,n−1 + I ′2w

(2)
n,n

+
[
i2Vgω−

I2e−iqa + I ′2
ω2
− − (I2 + I ′2)

− I2ae−iqa

]
∂A−

∂ξ−n
eiφ−n + c.c.

(19)
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One remarks that the term proportional to exp(iφ−n ) on
the right-hand side of the first equation is a secular term.
In order for the theory to be valid (solvability condi-
tion) [19], it must be eliminated. Hence, we set

2Vgω−
[
ω2
− − (I2 + I ′2 + J2 + J ′2)

]
+ I2J

′
2a sin(qa) = 0,

(20)

which gives the group velocity of the acoustic mode

V −g =
dω−
dq

=
I2J
′
2a sin(qa)

ω−
(
I2 + I ′2 + J2 + J ′2 − 2ω2

−
) · (21)

Therefore, the solution of equation (19) is

w(2)
n,n = B−(ξ−n , τ)eiφ−n + c.c.,

v(2)
n,n = − 1

ω2
− − (I2 + I ′2)

[ (
I2e−iqa + I ′2

)
B−(ξ−n , τ)

+
(

i2V −g ω−
I2e−iqa + I ′2
ω2
− − I2 − I ′2

− I2ae−iqa

)
∂A−

∂ξ−n

]
eiφ−n + c.c.,

(22)

where B−(ξ−n , τ) is another unknown function. In fact we
can let B−(ξ−n , τ) = 0, as it can be absorbed into the
lowest order solution. Then, (22) simplifies to

w(2)
n,n = 0,

v(2)
n,n = − 1

ω2
− − (I2 + I ′2)

[
i2V −g ω−

I2e−iqa + I ′2
ω2
− − (I2 + I ′2)

−I2ae−iqa
) ∂A−
∂ξ−n

]
eiφ−n + c.c. (23)

Using the same procedure as for the second order equa-
tion, and with a careful detailed calculation of equa-
tions (11, 14) for M (3)

n,n,M
(3)
n,n+1 and N

(3)
n,n, we obtain the

third order equation

L̂w(3)
n,n = 2ω−

(
I2 + I ′2 + J2 + J ′2 − 2ω2

−
) [

i
∂A−
∂τ

+P−
∂2A−

∂(ξ−n )2
+Q− | A− |2 A− + iR− | A− |2 A−

]
× eiφ−n + higher harmonic terms + c.c., (24)

where the coefficients are expressed by

P− =
1

2ω−
(
I2 + I ′2 + J2 + J ′2 − 2ω2

−
)

×
{(

V −g
)2 [6ω2

− − (I2 + I ′2 + J2 + J ′2)
]

+
a2

2
[
ω2
− − I2 − I ′2)

(
ω2
− − J2 − J ′2

)
− (I2J2 + I ′2J

′
2)
]}

,

(25)

Q− =
3

2ω−
(
I2 + I ′2 + J2 + J ′2 − 2ω2

−
) {J4

[(
α−1
)2

+
(
β−1
)2]

×
[
α−1
(
ω2
− + I ′2 cosqa− I ′2

)
+ β−1 I

′
2 sinqa

]
+ J ′4

[(
α−2
)2

+
(
β−2
)2] [

α−2
(
ω2
− + I2 cosqa− I2

)
+ β−2 I2 sinqa

]}
,

(26)

R− =
3

2ω−
(
I2 + I ′2 + J2 + J ′2 − 2ω2

−
) {J4

[(
α−1
)2

+
(
β−1
)2]

×
[
β−1
(
ω2
− + I2 cosqa− I ′2

)
− α−1 I ′2 sinqa

]
+ J ′4

[(
α−2
)2

+
(
β−2
)2] [−β−2 (ω2

− + I ′2 cosqa− I2
)

+ α−2 I2 sinqa
]}

(27)

with

α−1 = 1 + (I2 + I ′2 cosqa) /
[
ω2
− − (I2 + I ′2)

]
,

α−2 = 1 + (I ′2 + I2 cosqa) /
[
ω2
− − (I2 + I ′2)

]
,

β−1 = I ′2 sinqa/
[
ω2
− − (I2 + I ′2)

]
,

β−2 = I2 sinqa/
[
ω2
− − (I2 + I ′2)

]
.

The term proportional to eiφ−n in equation (24) is also
a secular term. To eliminate it we set the equation
for A−(ξ−n , τ)

i
∂A−
∂τ

+ P−
∂2A−

∂(ξ−n )2

+Q− | A− |2 A− + iR− | A− |2 A− = 0, (28)

which is a perturbed NLSE. The additional fourth term
in equation (28) comes from the structural asymmetry of
the sphalerite lattice by considering the expansion up to
the third order. Obviously, the two terms within braces
in equation (27) cancel, and R− = 0 in the case of uni-
form force constants with I2 = I ′2 and I4 = I ′4. The model
reduces then to the extensively studied 1D diatomic lat-
tice [5,13]. This multiple-scale expansion approach results
then in a standard NLSE. The alternating force-constant
lattice was studied in reference [17] by a similar method.
As only the cubic anharmonicity was included in that
model, each order of the solution contains a “direct cur-
rent” component, and only the second order expansion
leads to a NLSE. Therefore, the additional term produced
by the system structural asymmetry does not appear in
the equation.
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3.2 Optical mode

For the higher frequency optical mode, we rewrite the
equation of motion (8) in another form

L̂v(µ)
n,n = I ′2N

(µ)
n,n + I2N

(µ)
n,n−1 +

(
∂2

∂t2
+ J2 + J ′2

)
M (µ)
n,n,(

∂2

∂t2
+ J2 + J ′2

)
w(µ)
n,n = J2w

(µ)
n,n−1 + J ′2w

(µ)
n,n +N (µ)

n,n .

(29)

By a procedure similar to that used for the acoustic
mode, we solve equation (29) for the optical mode step
by step. We remark that there is a symmetry between
equations (9l–11) and (12–14), and also between equa-
tions (15, 29) for the acoustic and optical modes, respec-
tively. If we make the substitution

a→ −a, I2 (I ′2)→ J2 (J ′2) , I4 (I ′4)→ J4 (J ′4) ,

w(µ)
n,n → v(µ)

n,n, w
(µ)
n,n±1 → v

(µ)
n,n±1. (30)

Equations (9–11) are transformed into (12–14), and (15)
into (29). Using this property, and the results for the
acoustic mode, we write down the solutions for the op-
tical mode by inspection

v(1)
n,n = A+(ξ+

n , τ)eiφ+
n + c.c.,

w(1)
n,n = − J2eiqa + J ′2

ω2
− − (J2 + J ′2)

A+(ξ+
n , τ)eiφ+

n + c.c., (31)

where A+(ξ+
n , τ) is the envelope function for the optical

mode to be determined, φ+
n = qna − ω+(q)t, and ω+ is

the linear dispersion of the optical branch given by equa-
tion (3). For µ = 2, we also obtain the group velocity for
the optical mode

V +
g =

dω+

dq
=

I2J
′
2a sin(qa)

ω+(I2 + I ′2 + J2 + J ′2 − 2ω2
+)
· (32)

The solution of the second order equation for this mode is

v(2)
n,n = 0,

w(2)
n,n = − 1

ω2
− − (I2 + I ′2)

[
i2V +

g ω+
J2eiqa + J ′2

ω2
+ − (J2 + J ′2)

− J2aeiqa

]
∂A+

∂ξ+
n

eiφ+
n + c.c. (33)

Again the elimination of the secular term in the third order
solution gives the equation for A+(ξ+

n , τ),

i
∂A+

∂τ
+ P+

∂2A+

∂(ξ+
n )2

+Q+ | A+ |2 A+ + iR+ | A+ |2 A+ = 0, (34)

where the coefficients are

P+ =
1

2ω+

(
I2 + I ′2 + J2 + J ′2 − 2ω2

+

)
×
{(

V +
g

)2 [6ω2
+ − (I2 + I ′2 + J2 + J ′2)

]
+
a2

2
[(
ω2

+ − I2 − I ′2
)(
ω2

+ − J2 − J ′2
)
− (I2J2 + I ′2J

′
2)
]}
,

(35)

Q+ =
3

2ω+

(
I2 + I ′2 + J2 + J ′2 − 2ω2

+

){I4[(α+
1

)2
+
(
β+

1

)2]
×
[
α+

1

(
ω2

+ + J ′2 cosqa− J ′2
)
− β+

1 I
′
2 sinqa

]
+ I ′4

[(
α+

2

)2
+
(
β+

2

)2] [
α+

2

(
ω2

+ + J2 cosqa− J2

)
− β+

2 J2 sinqa
]}
,

(36)

R+ =
3

2ω+

(
I2 + I ′2 + J2 + J ′2 − 2ω2

+

){I4[(α+
1

)2
+
(
β+

1

)2]
×
[
β+

1

(
ω2

+ + J2 cosqa− J ′2
)

+ α+
1 J
′
2 sinqa

]
− I ′4

[(
α+

2

)2
+
(
β+

2

)2] [
β+

2

(
ω2

+ + J ′2 cosqa− J2

)
+ α+

2 I2 sinqa
]}

(37)

with

α+
1 = 1 + (J2 + J ′2 cosqa) /

[
ω2

+ − (J2 + J ′2)
]
,

α+
2 = 1 + (J ′2 + J2 cosqa) /

[
ω2

+ − (J2 + J ′2)
]
,

β+
1 = −J ′2 sinqa/

[
ω2

+ − (J2 + J ′2)
]
,

β+
2 = −J2 sinqa/

[
ω2

+ − (J2 + J ′2)
]
.

Equation (34) is also a perturbed NLSE with the same
structure as equation (28) for the acoustic mode.

We note that the original set of equations (2) for the
atomic displacements vn(t) and wn(t) are invariant with
respect to time inversion. However, the resulting equa-
tions (28, 34) are for the envelope functions A−(ξ−n , τ) and
A+(ξ+

n , τ). The displacements vn(t) and wn(t) are related
to A±(ξ±n , τ) by multiplication with a fast vibration factor
exp(±iφ±n ) (see Eqs. (6, 18) and (31)). As exp(±iφ±n ) =
exp[±i(qna−ω±t)] are not invariant with respect to time
inversion, then equations (28, 34) are also not invariant
with respect to that operation.

4 Stationary modes

For the acoustic mode with wavevector at the Brillouin-
zone boundary (q = π/a), and assuming quartic
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anharmonicity (i.e., k4, k
′
4 > 0) we calculate the coeffi-

cients in equation (28):

P− = − I2J
′
2a

2

2ω1

√
(I2 + I ′2 + J2 + J ′2)2 − 16I2J ′2

< 0, (38)

Q− =

3
[
J4

(
ω2

1 − 2I ′2
)4 + J ′4

(
ω2

1 − 2I2
)4]

2ω1 [ω2
1 − (I2 + I ′2)]3

√
(I2 + I ′2 + J2 + J ′2)2− 16I2J ′2

< 0,

(39)
R− = 0, (40)

where ω1 is the maximum linear acoustic frequency given
by equation (4). As I2 > I ′2, ω2

1 − (I2 + I ′2) < 0 and
Q− < 0 in this case. Also from equation (21) we know
that V −g (±π/a) = 0. Therefore, equation (28) becomes a
standard NLSE with a stationary single-soliton solution

A− =
√

2P−/Q−ε sech[ε(n− n0)a] exp[i(|P− |ε2t− φ0)],
(41)

where n0a and φ0 are the initial position and phase of the
soliton, respectively. In this case φ−n = nπ−ω1t, and from
equation (18) we obtain the configuration of the atomic
displacements in first order approximation

wn(t) = (−1)n2
√

2P−/Q−ε sech[ε(n− n0)a]
× cos(Ω1t− φ0),

vn(t) = − I2 − I ′2
(I2 + I ′2)− ω2

1

wn(t), (42)

where the vibrational frequency Ω1 = ω1+ | P− | ε2 lies in
the linear frequency gap between the acoustic and optical
branches. From the solution (42) we see that the vibration
of the two atoms in each unit cell are π out of phase.
The contribution of the higher order approximations to
the atomic displacements are comparatively small, and the
validity of this discrete multiple-scale method has been
proven by Bambi et al. in reference [13].

For the optical mode with q = ±π/a, we have in the
same way V +

g (±π/a) = 0 from equation (32) and the co-
efficients in equation (34) are

P+ =
I2J
′
2a

2

2ω2

√
(I2 + I ′2 + J2 + J ′2)2 − 16I2J ′2

> 0, (43)

Q+ =

3
[
I4
(
ω2

2 − 2J ′2
)4 + I ′4

(
ω2

2 − 2J2

)4]
2ω2[ω2

2 − (J2 + J ′2)]3
√

(I2 + I ′2 + J2 + J ′2)2− 16I2J ′2
< 0,

(44)
R+ = 0. (45)

Therefore, equation (34) has a stationary kink (dark-
soliton) solution

A− =
√

2P+/ | Q+ |ε tanh[ε(n− n0)a]

× exp
[
i
(
−2P+ε

2t− φ0

)]
, (46)

which yields the distribution of atomic displacements with
φ+
n = nπ − ω2t

vn(t) = (−1)n2
√

2P+/ | Q+ |ε tanh[ε(n− n0)a]
× cos(Ω2t− φ0)],

wn(t) =
J2 − J ′2

ω2
2 − (J2 + J ′2)

vn(t), (47)

with the vibrational frequency Ω2 = ω2 + 2P+ε
2 lying in

the frequency band of the optical branch. In this case the
displacements of the two atoms in each unit cell are in
phase.

For the optical mode with q = 0, we also have
V +

g (0) = 0 and the coefficients in equation (34) are

P+ = −I2J
′
2a

2

2ω3
3

< 0, (48)

Q+ = − 3ω5
3 (I4 + I ′4)

2 [ω2
3 − (J2 + J ′2)]3

< 0, (49)

R+ = 0. (50)

Again, there is a stationary single-soliton solution

A+ =
√

2P+/Q+ε sech[ε(n− n0)a] exp[i(P+ε
2t− φ0)].

(51)

The distribution of atomic displacements is

vn(t) = 2
√

2P+/Q+ε sech[ε(n− n0)a] cos(Ω3t− φ0)],

(52)

wn(t) = −m
M
vn(t), (53)

with the vibrational frequency Ω3 = ω3+ | P+ | ε2 above
the linear frequency band of the optical branch. The vi-
bration of the two atoms of one unit cell are π out of phase
in this case.

Finally, we consider the acoustic mode with q = 0.
From equation (3) we know that ω−(0) = 0, so that both
P− and Q− diverge. Therefore, the multiple-scale expan-
sion is in this case independent of the fast variable φ−n , and
the nonlinear modulation equation for A−(ξ−n , τ) becomes
invalid. We must then apply the full continuum approx-
imation [2] to the lattice system. The lattice equation of
motion reduces then to a KdV or to a modified KdV equa-
tion [2].

5 Moving modes

In the last section, the stationary LMs with wavevectors
q = 0,±π/a were discussed. Generally, when q 6= 0 or
±π/a, R± 6= 0 so that equations (28, 34) are not standard
NLSEs. We numerically compared the coefficients for typi-
cal values of the system parameters M = 2m and kj = 3k′j
(j = 2, 4). For 0 < q < π/a, the magnitude of R± is 10−1

to 10−2 times smaller than that of P± and Q±. Hence, the
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fourth term in both equations (28, 34) can be treated as
a perturbation.

Ignoring the subscripts, and rewriting equa-
tions (28, 34) in a unified form, one obtains

i
∂A

∂t
+ P

∂2A

∂(xn)2
+Q | A |2 A = −iR | A |2, (54)

with A = A±, P = P±, Q = Q±, R = R± and xn = na.
To treat equation (54) with the proposed perturbation
approach [20], we make the transformation

A→ (2/Q)1/3A, xn → (2P 3/Q)1/6xn, t→ (2/Q)1/3t.
(55)

Then, equation (54) reduces to a mathematically conve-
nient form

i
∂A

∂t
+

∂2A

∂(xn)2
+ 2 | A |2 A = −i

2R
Q
| A |2 A. (56)

The single-soliton solution of the corresponding homoge-
neous equation is

A = 2β sech[2β(xn − ζ0 + 4αt)] exp
{
− i
[
2αxn

+4
(
α2 − β2

)
t+ θ0

]}
, (57)

where α, β, ζ0 and θ0 are four real parameters which deter-
mine the moving velocity, height and width, initial posi-
tion, and initial phase of the soliton, respectively. One then
applies the perturbation by treating 2R/Q as an expan-
sion parameter. From equations (52–55) in reference [20],
we obtain

αt1 = 0, βt1 = −32R
3Q

β3, ζt1 = 0,

δt1 = −4(α2 + β2) +
16R
3Q

β2, (58)

where t1 is the “slow” time variable in the soliton pertur-
bation expansion. Returning to the original time variable t
(and remarking that ∂t = ∂t0 + ε∂t1 up to first order) the
integration can be performed to obtain the time variation
of the soliton parameters

α = α0, β =
β0√

1 + 64β2Rt/3Q
, ζ = ζ0 − 4α0t,

δ = δ0 − 4α2
0 −

3Q− 4R
18R

ln
[
1 + 64β2

0Rt/3Q
]
. (59)

One clearly sees that the height of the soliton dampens
with t and that the initial position and phase of the soliton
are affected by the perturbation, while the moving veloc-
ity of the soliton remains constant. Of course, when one
returns to the original variables the velocity of the soliton
modes should be V ±g . Moreover, the first order corrections
to the soliton can also be obtained from reference [20].

6 Discussion and conclusion

If one makes the substitution Ij(Jj) → I ′j(J
′
j) (j = 2,

3, 4), equation (2) turns into the equation of motion for
the center of the LMs on tight-bond atom pairs. Using
this symmetry and the solutions for the mode center on
weak-bond atom pairs, one can obtain the corresponding
solutions for the mode center on tight-bond atom pairs.

The inclusion of the cubic term in equations (15, 29)
brings an additional feature to LMs, the vibrational center
being accompanied with a localized lattice distortion hav-
ing a kink shaped distribution. Moreover, the cubic nonlin-
earity makes the atomic interaction potential softer and
hence it decreases the frequency of LMs [13,14]. There-
fore, the optical LM with vibrational frequency above ω3

might disappear, but the gap LM always exists. The lat-
tice model with both cubic and quartic anharmonicities,
as well as a numerical molecular dynamics study of equa-
tion (2), are under investigation.

The amplitude equation of LMs in this sphalerite-
structure lattice is described by a perturbed NLSE, and
the perturbation calculation shows that the height of
LMs dampens with time. This is the main difference be-
tween the sphalerite-structure lattice and the diatomic
(ionic) lattice systems. In addition to molecular lattice
systems [11], we think that the next candidates for the
experimental realization and detection of such nonlinear-
induced localized modes should be ionic crystals. However,
this 1D sphalerite-structure lattice is quite general and the
results of this work are consistent with other studies of 1D
lattice systems [3–5,13–16]. If one sets m = M our model
reduces to a 1D diamond-structure lattice [17], if kj = k′j
one recovers the 1D diatomic lattice [13–16], and if one
lets both masses and force constants uniform the model
becomes a simple 1D monatomic lattice [3–5].

In conclusion, we have studied nonlinear-induced local-
ized modes in a one-dimensional atomic chain with two pe-
riodically alternating masses and force constants by means
of a discrete multiple-scale expansion. The model simu-
lates a row of atoms in the 〈1 1 1〉-direction of sphalerite-
structure crystals such as the important semiconductor
GaAs. We found some new phenomenon for the LMs which
may come from the structural asymmetry of this lattice.
The amplitude of LMs in this system is governed by a per-
turbed NLSE instead of the standard one of 1D diatomic
(ionic) lattices [13,14]. Although the stationary LMs with
carrier wavevector at q = ±π/a are similar to those of the
diatomic lattices, the general LMs with wavevectors q 6= 0
or ±π/a are quite different owing to the perturbation in
the sphalerite-structure lattice. The perturbation calcula-
tion shows that the height of the LMs dampens with time.
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